Menu
Your Cart

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books


Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books

Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books
Reinforcement learning and optimal control: English (US) Demecit P. Bosecas Books
US$32.68
  • Stock: 100
  • Modèle: 10103747434870
  • Poids: 1.00kg
  • Dimensions: 0.10cm x 0.10cm x 0.10cm

How to Order & Pay

Shipping: Free Shipping & Customs Tax included are subject to change, please refer to the quote you received.

Delivery: Accurate and precise order tracking. Learn more

Package Safety: Refund for your damaged or lost package. Learn more

Payments:


Shop with confidence

Inspect item by item, verify, conduct quality checks, and upload authentic photos of the products.

Consolidate and repackage all items to reduce international logistics costs and facilitate international transportation.

Our customer service is always here if you need help. Click here to chat with us or Chat on WhatsApp

Please log in to view detailed product descriptions and select product options.
作  者:(美)德梅萃·P.博塞卡斯 著
定  价:149
出 版 社:清华大学出版社
出版日期:2020年06月01日
页  数:373
装  帧:平装
ISBN:9787302540328
主编推荐
"Dimitri P. Bertseka,美国MIT终身教授,美国国家工程院院士,清华大学复杂与网络化系统研究中心客座教授,电气工程与计算机科学领域国际知名作者,著有《非线性规划》《网络优化》《凸优化》等十几本畅销教材和专著。本书的目的是考虑大型且具有挑战性的多阶段决策问题,这些问题原则上可以通过动态规划和很优控制来解决,但它们的准确解决方案在计算上是难以处理的。本书讨论依赖于近似的解决方法,以产生具有足够性能的次优策略。这些方法统称为增强学习,也可以叫做近似动态规划和神经动态规划等。 本书的等
目录
1. Exact Dynamic Programming
1.1. Deterministic Dynamic Programming
1.1.1. Deterministic Problems
1.1.2. The Dynamic Programming Algorithm
1.1.3. Approximation in Value Space
1.2. Stochastic Dynamic Programming
1.3. Examples, Variations, and Simplifications
1.3.1. Deterministic Shortest Path Problems
1.3.2. Discrete Deterministic Optimization
1.3.3. Problems with a Termination State
1.3.4. Forecasts
1.3.5. Problems with Uncontrollable State Components
1.3.6. Partial State Information and Belief States
1.3.7. Linear Quadratic Optimal Control
1.3.8. Systems with Unknown Parameters - Adaptive Control
1.4. Reinforcement Learning and Optimal Control - Some Terminology
1.5. Notes and Sources
2. Approximation in Value Space
2.1. Approximation Approaches in Reinforcement Learning
2.1.1. General Issues of Approximation in Value Space
2.1.2. Off-Line and On-Line Methods
2.1.3. Model-Based Simplification of the Lookahead Minimization
2.1.4. Model-Free off-Line Q-Factor Approximation
2.1.5. Approximation in Policy Space on Top of Approximation in Value Space
2.1.6. When is Approximation in Value Space Effective?
2.2. ltistep Lookahead
2.2.1. ltistep Lookahead and Rolling Horizon
2.2.2. ltistep Lookahead and Deterministic Problems
2.3. Problem Approximation
2.3.1. Enforced Decomposition
2.3.2. Probabilistic Approximation - Certainty Equivalent Control
2.4. Rollout and the Policy Improvement Principle
2.4.1. On-Line Rollout for Deterministic Discrete Optimization
2.4.2. Stochastic Rollout and Monte Carlo Tree Search
2.4.3. Rollout with an Expert
2.5. On-Line Rollout for Deterministic Infinite-Spaces Problems Optimization Heuristics
2.5.1. Model Predictive Control
2.5.2. Target Tubes and the Constrained Controllability Condition
2.5.3. Variants of Model Predictive Control
2.6. Notes and Sources
3. Parametric Approximation
3.1. Approximation Architectures
3.1.1. Linear and Nonlinear Feature-Based Architectures
3.1.2. Training of Linear and Nonlinear Architectures
3.1.3. Incremental Gradient and Newton Methods
3.2. Neural Networks
3.2.1. Training of Neural Networks
3.2.2. ltilayer and Deep Neural Networks
3.3. Sequential Dynamic Programming Approximation
3.4. Q-Factor Parametric Approximation
3.5. Parametric Approximation in Policy Space by Classification
3.6. Notes and Sources
4. Infinite Horizon Dynamic Programming
4.1. An Overview of Infinite Horizon Problems
4.2. Stochastic Shortest Path Problems
4.3. Discounted Problems
4.4. Semi-Markov Discounted Problems
4.5. Asynchronous Distributed Value Iteration
4.6. Policy Iteration
4.6.1. Exact Policy Iteration
4.6.2. Optimistic and ltistep Lookahead Policy Iteration
4.6.3. Policy Iteration for Q-factors
4.7. Notes and Sources
4.8. Appendix: Mathematical Analysis
4.8.1. Proofs for Stochastic Shortest Path Problems
4.8.2. Proofs for Discounted Problems
4.8.3. Convergence of Exact and Optimistic Policy Iteration
5. Infinite Horizon Reinforcement Learning
5.1. Approximation in Value Space - Performance Bounds
5.1.1. Limited Lookahead
5.1.2. Rollout and Approximate Policy Improvement
5.1.3. Approximate Policy Iteration
5.2. Fitted Value Iteration
5.3. Simulation-Based Policy Iteration with Parametric Approximation
5.3.1. Self-Learning and Actor-Critic Methods
5.3.2. Model-Based Variant of a Critic-Only Method
5.3.3. Model-Free Variant of a Critic-Only Method
5.3.4. Implementation Issues of Parametric Policy Iteration
5.3.5. Convergence Issues of Parametric Policy Iteration Oscillations
5.4. Q-Learning
5.4.1. Optimistic Policy Iteration with Parametric Q-Factor Approximation - SARSA and DQN
5.5. Additional Methods - Temporal Differences
……
内容虚线

内容简介

本书的主要内容包括:第1章动态规划的准确求解;第2章值空间的逼近;第3章参数逼近;第4章无限时间动态规划;第5章无限时间强化学习;第6章集结技术。通过本书读者可以较为全面地了解动态规划、近似动态规划和强化学习的理论框架、主流算法的工作原理和近期新发展。本书可用作人工智能或系统与控制科学等相关专业的高年级本科生或研究生的教材,也适合开展相关研究工作的专业技术人员作为参考用书。
作者简介
(美)德梅萃·P.博塞卡斯 著
Dimitri P. Bertseka,美国MIT终身教授,美国国家工程院院士,清华大学复杂与网络化系统研究中心客座教授。电气工程与计算机科学领域国际知名作者,著有《非线性规划》《网络优化》《凸优化》等十几本畅销教材和专著。

Plus de moyens d'obtenir de l'aide

1. Veuillez cliquer sur AIDE pour obtenir plus d'informations.

2. Contactez-nous au [email protected]

3. Discutez avec nous or Discuter sur WhatsApp

Conseils pour réduire les coûts d'expédition

1)Débarrassez-vous de l'emballage d'origine, par exemple, si vous achetez une paire de chaussures, vous pourriez vous débarrasser de la boîte à chaussures ce qui économisera beaucoup sur le poids volumétrique.

2)Les frais de port sont normalement facturés par tranche de 0,5KG. Donc, si vous achetez un produit qui ne pèse que 0,1KG, vous pourriez envisager d'acheter 2-3 PCS à la fois, ce qui n'ajoutera pas plus de frais de port à votre commande.

Poids Volumétrique

Le poids volumétrique se réfère à la taille globale d'un colis et est mesuré en kilogrammes volumétriques. Le poids volumétrique peut être calculé en multipliant la longueur, la largeur et la hauteur d'un colis (en cm) et en divisant ce chiffre par 5000 (certains transporteurs utilisent un diviseur de 6000/7000, etc).

Volumetric Weight

Articles Prohibés (mais non limités) pour l'Expédition Internationale,

  • cigarette Cigarette
  • alcohol Alcool
  • liquid Liquide
  • knife-scissor Couteau/Ciseaux
  • toy-gun Pistolet jouet
  • seeds Graines
  • animals Animaux vivants
  • flowers Fleurs réelles

Les articles suivants (mais non limités) pourraient seulement être expédiés avec des lignes logistiques spécifiques,

  • cream Crème
  • cosmetics Cosmétiques
  • snacks Encas
  • medicine Médicament
Women's Clothing (Coats & Jackets, Dresses, T-Shirts, Tops, Suits)
Standard Size
China (cm) 160-165/84-86 165-170 / 88-90 167-172 / 92-96 168-173 / 98-102 170-176 / 106-110
International XS S M L XL
USA 2 4-6 8-10 12-14 16-18
Europe 34 34-36 38-40 42 44
Bra - Under bust
Standard Size
China
(cm)
76.2 81.3 86.4 91.5 96.5 101.6 106.7 112 117 122 127 132 137 142
USA 30 32 34 36 38 40 42 44 46 48 50 52 54 56
UK 30 32 34 36 38 40 42 44 46 48 50 52 54 56
Europe   70 75 80 85 90                
France   85 90 95 100 105                
Italy   1 2 3 4 5                
Bra - Cup size
Standard Size
China A B C D E                  
USA AA A B C D DD DDD/E F FF G GG H HH J
UK AA A B C D DD E F FF G GG H HH J
Europe AA A B C D E F              
France AA A B C D E F              
Italy   B B/none C D DD E F            
Women's Underwear
Standard Size
China S M L XL XXL XXXL
International XS S M L XL XXL
USA 2 4 6 8 10 12
UK 6 8 10 12 14 16
Europe 32 34 36 38 40 42
France 34 36 38 40 42 44
Italy 38 40 42 44 46 48
Women's Shoes
Standard Size
Length (cm) 22.8 23.1 23.5 24.1 24.5 25.1 25.7 26 26.7 27.3 27.9 28.6 29.2
China 35.5 36 37 38 39 40 41.5 42 43 44.5 46 47 48
USA 5 5.5 6 7 7.5 8.5 9.5 10 10.5 12 13 14 15.5
UK 2.5 3 3.5 4.5 5 6 7 7.5 8 9.5 10.5 11.5 13
Europe 35 35.5 36 37.5 38 39 41 42 43 44 45 46.5 48.5
Men's Clothing (Coats & Jacketst,T-Shirts,Suits)
Standard Size
China (cm) 165 / 88-90 170 / 96-98 175 / 108-110 180 / 118-122 185 / 126-130
International S M L XL XXL
Men's Clothing (Shirts)
Standard Size
China (cm) 36 - 37 38 - 39 40 - 42 43 - 44 45 - 47
International S M L XL XXL
Men's Clothing (Pants)
Size (cm) 42 44 46 48 50
Waist (cm) 68 - 72 cm 71 - 76 cm 75 - 80 cm 79 - 84 cm 83 - 88 cm
Outseam (cm) 99 cm 101.5 cm 104 cm 106.5 cm 109 cm
Men's Underwear
Standard Size
China(cm) 72-76 76-81 81-87 87-93 93-98
International S M L XL XXL
USA(inch) 28-30 30-32 32-34 34-38 38-42
Men's Shoes
Standard Size
Length(cm) 24.5 25.1 25.7 26 26.7 27 27.6 28.3 28.6 28.9
China 39.5 41 42 43 44 44.5 46 47 47.5 48
USA 6 7 8 8.5 9.5 10 11 12 12.5 13
UK 5.5 6.5 7.5 8 9 9.5 10.5 11.5 12 12.5
Europe 38 39 41 42 43.5 44 45 46 46.5 47
长度Length
Imperial英制 Meric公制
1 inch[in] 英寸 ---- 2.54 cm 厘米
1 foot[ft] 英尺 12 in 英寸 0.03048 m 米
1 yard[yd] 码 3 ft 英尺 0.9144 m 米
1 mile[mi] 英里 1760 yd 码 1.6093 km 千米
1 int nautical mile[inm] 海里 2025.4 yd 码 1.853 km 千米
面积Area
Imperial英制 Meric公制
1 sq inch[in2] 平方英寸 ---- 6.4516 cm2 平方厘米
1 sq foot[ft2] 平方英尺 144 in2 平方英寸 0.0929 m2 平方米
1 sq yard[yd2] 平方码 9 ft2 平方英尺 0.8361 m2 平方米
1 acre 英亩 4840 yd2 平方码 4046.9 m2 平方米
1 sql mile[mile2] 平方英里 640 acre 英亩 2.59 km2 平方千米
体积/容量Volume/Capacity
Imperial英制 Meric公制
1 fluid ounce 液量蛊司 1.048 UK fl oz 英制液量蛊司 29.574 ml 毫升
1 pint(16 fl oz 液量品脱)品脱 0.8327 UK pt 英制品脱 0.4731 l 升
1 gallon 加仑 0.8327 UK gal 英制加仑 3.7854 l 升
重量Weight
Imperial英制 Meric公制
1 ounce[oz]蛊司 437.5 grain 格令 28.35 g 克
1 pound[lb]磅 16 oz 蛊司 0.4536 kg 千克
1 stone 石 14 lb 磅 6.3503 kg 千克
1 hundredweight[cwt] 英担 112 lb 磅 50.802 kg 千克
1 long ton(UK) 长顿 20 cwt 英担 1.061 t 顿